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Abstract

The objective of cooperative game theory is to study ways to enforce and sustain cooperation among
agents willing to cooperate. A central question in this field is how the benefits (or costs) of a joint
effort can be divided among participants, taking into account individual and group incentives, as well
as various fairness properties.

In this chapter, we define basic concepts and review some of the classical results in the cooperative
game theory literature. Our focus is on games that are based on combinatorial optimization problems
such as facility location. We define the notion of cost sharing, and explore various incentive and
fairness properties cost-sharing methods are often expected to satisfy. We show how cost-sharing
methods satisfying a certain property termed cross-monotonicity can be used to design mechanisms
that are robust against collusion, and study the algorithmic question of designing cross-monotonic
cost-sharing schemes for combinatorial optimization games. Interestingly, this problem is closely
related to linear-programming-based techniques developed in the field of approximation algorithms.
We explore this connection, and explain a general method for designing cross-monotonic cost-sharing
schemes, as well as a technique for proving impossibility bounds on such schemes. We will also
discuss an axiomatic approach to characterize two widely applicable solution concepts: the Shapley
value for cooperative games, and the Nash bargaining solution for a more restricted framework for
surplus sharing.

15.1 Cooperative Games and Cost Sharing

Consider a setting where a set .4 of n agents seek to cooperate in order to generate value.
The value generated depends on the coalition S of agents cooperating. In general, the
set of possible outcomes of cooperation among agents in S C A is denoted by V(S),
where each outcome is given by a vector in R®, whose i’th component specifies the
utility that the agent i € S derives in this outcome. The set .4 of agents along with the
function V defines what is called a cooperative game (also known as a coalitional game)
with nontransferable utilities (abbreviated as an NTU game). A special case, called a
cooperative game with transferable utilities (abbreviated as a TU game), is when the
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Figure 15.1. An example of the facility location game.

value generated by a coalition can be divided in an arbitrary way among the agents in S.
In other words, a TU game is defined by specifying a function v: 2 > R, which gives
the value v(S) € R generated by each coalition S. We assume v(@) = 0. The set of all
possible outcomes in such a game is defined as V(S) = {x € R*: Yies Xi < u(S)}.

The notion of a cooperative game was first proposed by von Neumann and
Morgenstern. This notion seeks to abstract away all other aspects of the game ex-
cept the combinatorial aspect of the coalitions that can form. This is in contrast with
noncooperative games, where the focus is on the set of choices (moves) available to
each agent.

Note that in the definition of a cooperative game, we did not restrict the values to
be nonnegative.! In fact, the case that all values are nonpositive is the focus of this
chapter, as it corresponds to the problem of sharing the cost of a service among those
who receive the service (this is by taking the value to be the negative of the cost). Again,
the cost-sharing problem can be studied in both the TU and the NTU models. The TU
model applies to settings where, for example, a service provider incurs some (monetary)
cost ¢(S) in building a network that connects a set S of customers to the Internet, and
needs to divide this cost among customers in S. In practice, the cost function c is often
defined by solving a combinatorial optimization problem. One example, which we will
use throughout the chapter, is the facility location game defined below.

Definition 15.1 In the facility location game, we are given a set A of agents
(also known as cities, clients, or demand points), a set F of facilities, a facility
opening cost f; for every facility i € F, and a distance d;; between every pair
(i, j) of points in AU F indicating the cost of connecting j to i. We assume
that the distances come from a metric space; i.e., they are symmetric and obey
the triangle inequality. For a set S C A of agents, the cost of this set is defined
as the minimum cost of opening a set of facilities and connecting every agent
in S to an open facility. More precisely, the cost function c is defined by ¢(S) =

mingcr{d ;cp fi + 2 jcs Minicr dijl

Example 15.2 Figure 15.1 shows an instance of the facility location game with
3 agents {a, b, c} and 2 facilities {1, 2}. The distances between some pairs are
marked in the figure, and other distances can be calculated using the triangle

U If all values are nonnegative, the problem is called a surplus sharing problem.
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inequality (e.g., the distance between facility 1 and client c is 2+ 1+ 1 = 4).
The cost function defined by this instance is the following:

c({ah) =4, c({b}) =3, c({c}) =3,
c({a,b}) =6, c({b,c}) =4, c({a,c}) =7, c({a,b,c}) =S8.

Since the monetary cost may be distributed arbitrarily among the agents, it is natural
to model the above example as a TU game. An example of a case where the NTU
model is more applicable is a network design problem where the cost incurred by an
agent i in the set of agents S receiving the service corresponds to the delay this agent
suffers. There are multiple designs for the network connecting the customers in S, and
each design corresponds to a profile of delays that these agents will suffer. The set of
possible outcomes for the coalition S is defined as the collection of all such profiles,
and is denoted by C(S). As delays are nontransferrable, this setting is best modeled
as an NTU cost-sharing game. For another example of an NTU game, see the housing
allocation problem in Section 10.3 of this book.

As most of the work on cost sharing in the algorithmic game theory literature has
so far focused on TU games, this chapter is mainly devoted to such games; henceforth,
by a cost-sharing game we mean a TU game, unless otherwise stated.

15.2 Core of Cost-Sharing Games

A central notion in cooperative game theory is the notion of core. Roughly speaking,
the core of a cooperative game is an outcome of cooperation among all agents where no
coalition of agents can all benefit by breaking away from the grand coalition. Intuitively,
the core of a game corresponds to situations where it is possible to sustain cooperation
among all agents in an economically stable manner.

In this section, we define the notion of core for cost-sharing games, and present
two classical results on conditions for nonemptiness of the core. We show how the
notion of core for TU games can be relaxed to an approximate version suitable for hard
combinatorial optimization games, and observe a connection between this notion and
the integrality gap of a linear programming relaxation of such problems.

15.2.1 Core of TU Games

Formally, the core of a TU cost-sharing game is defined as follows.

Definition 15.3  Let (A, ¢) be a TU cost-sharing game. A vector & € R4 (some-
times called a cost allocation) is in the core of this game if it satisfies the following
two conditions:

* Budget balance: ), o; = c(A).

e Core property: for every S C A, Zjes o <c(S).

Example 15.4  As an example, consider the facility location game of Exam-
ple 15.2 (Figure 15.1). It is not hard to verify that the vector (4, 2, 2) lies in the
core of this game. In fact, this is not the only cost allocation in the core of this
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game; for example, (4, 1, 3) is also in the core. On the other hand, if a third facility
with opening cost 3 and distance 1 to agents a and c is added to this game, the
resulting game will have an empty core. To see this, note that after adding the
third facility, we have c({a, c}) = 5. Now, if there is a vector « in the core of this
game, we must have

a, +ap < c({a,b}) =6
ap+oa. <c({b,c}) =4

o, +a. <c({a,c}) =5

By adding the above three inequalities and dividing both sides by 2, we obtain
oy +ap +a. <7.5 < c({a, b, c}). Therefore a cannot be budget balanced.

A classical result in cooperative game theory, known as the Bondareva—Shapley
theorem, gives a necessary and sufficient condition for a game to have nonempty core.
To state this theorem, we need the following definition.

Definition 15.5 A vector A that assigns a nonnegative weight As to each
subset S € A is called a balanced collection of weights if for every j € A,

ZS:jES As =1

Theorem 15.6 A cost-sharing game (A, ¢) with transferable utilities has a
nonempty core if and only if for every balanced collection of weights X, we have

Y scarsc(S) = c(A).

PROOF By the definition of the core, the game (A, c¢) has a nonempty core if
and only if the solution of the following linear program (LP) is precisely c(A).
(Note that this solution can never be larger than ¢(A).)

Maximize >, o;

(15.1)
Subjectto VS C A: )"

jes@j = c(S).

By strong LP duality, the solution of the above LP is equal to the solution of the
following dual program:

Minimize Z Asc(S)
SCA

Subjectto VjeA: Y As=1 (15.2)
S:jes
VSCA:1g>0.

Therefore, the core of the game is nonempty if and only if the solution of the
LP (15.2) is equal to c(A). By definition, feasible solutions of this program
are balanced collections of weights. Therefore, the core of the game (A, ¢) is
nonempty if and only if for every balanced collection of weights (Ag), > ¢ 4
Asc(S) > c(A). O -
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As an example, the proof of emptiness of the core given in Example 15.4 can be
restated by defining a vector A as follows: Ay, 5y = App.c} = Ma,e} = % and Ay = O for
every other set S. It is easy to verify that A is a balanced collection of weights and

D scarsc(S) < c(A).

15.2.2 Approximate Core

As we saw in Example 15.4, a difficulty with the notion of core is that the core of
many cost-sharing games, including most combinatorial optimization games based on
computationally hard problems, is often empty. Furthermore, when the underlying cost
function is hard to compute (e.g., in the facility location game), even deciding whether
the core of the game is empty is often computationally intractable. This motivates the
following definition.

Definition 15.7 A vector @ € R* is in the y-approximate core (or y-core, for
short) of the game (A, c¢) if it satisfies the following two conditions:

* y-Budget balance: yc(A) < ZJ-EA aj <c(A).

¢ Core property: for every S C A, ZjeS aj < c(S).

For example, in the facility location game given in Example 15.4, the vector
(3.5,2.5,1.5) is in the %—core of the game. Note that the argument given to show
the emptiness of the core of this game actually proves that for every y > %5, the
y-core of this game is empty.

The Bondareva—Shapley theorem can be easily generalized to the following approx-
imate version.

Theorem 15.8  For every y < 1, a cost-sharing game (A, c) with transferable
utilities has a nonempty y-core if and only if for every balanced collection of
weights X, we have ) s 4 hsc(S) = yc(A).

The proof is similar to the proof of the Bondareva—Shapley theorem and is based
on the observation that by LP duality, the y-core of the game is nonempty if and only
if the solution of the LP (15.2) is at least y¢(S). Note that if the cost function c is
subadditive (i.e., c(S1 U S) < ¢(S1) + ¢(S,) for any two disjoint sets S; and S,), then
the optimal integral solution of the LP (15.2) is precisely c¢(A). Therefore,

Corollary 15.9  For any cost-sharing game (A, ¢) with a subadditive cost func-
tion, the largest value y for which the y-core of this game is nonempty is equal
to the integrality gap of the LP (15.2).

As it turns out, for many combinatorial optimization games such as set cover, vertex
cover, and facility location, the LP formulation (15.2) is in fact equivalent to the
standard (polynomial-size) LP formulation of the problem, and hence Corollary 15.9
translates into a statement about the integrality gap of the standard LP formulation of
the problem. Here, we show this connection for the facility location game.
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We start by formulating the facility location problem as an integer program. In this
formulation, x; and y;; are variables indicating whether facility i is open, and whether
agent j is connected to facility i.

Minimize ), 7 fixi + 3 icr D jea dijVij
Subjectto Vje A: Y . ryi; > 1
ieF V1] (15.3)
ViEf,jE.AZ.X,‘Zyij
ViEF,jEA:Xi,yUE{O,l}.
By relaxing the second constraint to x;, y;; > 0 we obtain an LP whose dual can be
written as follows:

Maximize >, o;

Subjectto Vie F,jeA: Bij > a; —dj;
VieF: ZjeA:Bi.i <fi
VieF,jeA: a;,B; =0

(15.4)

Note that we may assume without loss of generality that in a feasible solution of the
above LP, B;; = max(0, o; — d;;). Thus, to specify a dual solution it is enough to give
a. We now observe that the above dual LP captures the core constraint of the facility
location game; i.e., it is equivalent to the LP (15.1).

Proposition 15.10  For any feasible solution (&, B) of the LP (15.4), a satisfies
the core property of the facility location game.

PROOF We need to show that for every set S C A, ZjeS a; < c(S), where c(S)
is the cost of the facility location problem for agents in S. First we note that for any
facility i and set of agents R C A, by adding the first and the second inequalities
of the LP (15.4) for facility i and every j € R we obtain

< i) dy. (15.5)

JER JER

Now, consider an optimal solution for the set of agents S, and assume iy, ..., i
are facilities that are open and Ry is the set of agents served by facility i, in this
solution. Summing Inequality (15.5) for every (i;, R,) will yield the result. O

By the above proposition, the solution of the dual LP (15.4) (which, by LP duality,

is the same as the LP relaxation of (15.3)) is equal to the solution of the LPs (15.1)

and (15.2). Furthermore, the optimal integral solution of (15.3) is ¢(A). Therefore, the

integrality gap of (15.3) is the same as that of (15.2) and gives the best budget balance

factor that a cost allocation satisfying the core property can achieve. The best known

results in the field of approximation algorithms show that this gap (in the worst case)
1

. 1
is between 153 and Ti63-
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15.2.3 Core of NTU Games

We conclude this section with a classical theorem due to Scarf, which gives a sufficient
condition for the nonemptiness of the core of NTU games similar to the one given in
Theorem 15.6 for TU games. However, unlike in the case of TU games, the condition
given in Scarf’s theorem is not necessary for the nonemptiness of the core.

Formally, the core of an NTU cost-sharing game (A, C) is the collection of all
cost allocations & € C(A) such that there is no nonempty coalition S € .4 and cost
allocation x € C(S) for which x; < «; forall j € S. Note that this definition coincides
with Definition 15.3 in the case of a TU game. In the following theorem the support of
a balanced collection of weights A denotes the collection of all sets S with Ag > 0.

Theorem 15.11 Let (A, C) be a cost-sharing game with nontransferable utili-
ties. Assume for every balanced collection of weights A and every vector x € RA
the following property holds: if for every set S in the support of A, the restriction of
X to the coordinates in S is in C(S), then x € C(A). Then (A, C) has a nonempty
core.

The proof of the above theorem, which is beyond the scope of this chapter, uses an
adaptation of the Lemke—Howson algorithm for computing Nash equilibria (described
in Section 3.4 of this book), and is considered an early and important contribution of
the algorithmic viewpoint in game theory. However, the worst case running time of
this algorithm (like the Lemke—Howson algorithm) is exponential in |.4|. This is in
contrast to the proof of the Bondareva—Shapley theorem, which gives a polynomial-time
algorithm? for computing a point in the core of the game, if the core is nonempty.

15.3 Group-Strategyproof Mechanisms and Cross-Monotonic
Cost-Sharing Schemes

The cost-sharing problem defined in this chapter models the pricing problem for a
service provider with a given set of customers. In settings where the demand is sensitive
to the price, an alternative choice for the service provider is to conduct an auction
between the potential customers to select the set of customers who can receive the
service based on their willingness to pay and the cost structure of the problem. The
goal is to design an auction mechanism that provides incentives for individuals as well
as groups of agents to bid truthfully. In this section, we study this problem and exhibit
its connection to cost sharing.

We start with the definition of the setting. Let A be a set of n agents interested in
receiving a service. The cost of providing service is given by a cost function c: 24 >
R* U {0}, where c¢(S) specifies the cost of providing service for agents in S. Each agent
i has a value u; € R for receiving the service; that is, she is willing to pay at most u;
to get the service. We further assume that the utility of agent i is given by u;q; — x;,

2 This is assuming a suitable representation for the cost function c, e.g., by a separation oracle for (15.1), or in
combinatorial optimization games where statements like Proposition 15.10 hold.
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where ¢; is an indicator variable that indicates whether she has received the service or
not, and x; is the amount she has to pay. A cost-sharing mechanism is an algorithm that
elicits a bid »; € R from each agent, and based on these bids, decides which agents
should receive the service and how much each of them has to pay. More formally,
a cost-sharing mechanism is a function that associates to each vector b of bids a set
Q(b) C A of agents to be serviced, and a vector p(b) € R” of payments. When there
is no ambiguity, we write Q and p instead of Q(b) and p(b), respectively. We assume
that a mechanism satisfies the following conditions:

* No Positive Transfer (NPT): The payments are nonnegative (i.e., p; > 0 for all 7).

* Voluntary Participation (VP): An agent who does not receive the service is not charged
(i.e., p; = 0fori ¢ Q), and an agent who receives the service is not charged more than
her bid (i.e., p; < b; fori € Q)

* Consumer Sovereignty (CS): For each agent i, there is some bid b} such that if i bids
b, she will get the service, no matter what others bid.

Furthermore, we want the mechanisms to be approximately budget-balanced. We
call a mechanism y-budget-balanced with respect to the cost function c if the total
amount the mechanism charges the agents is between yc(Q) and ¢(Q) (i.e., yc(Q) <
Yico Xi < c(Q)).

We look for mechanisms, called group strategyproof mechanisms, which satisfy the
following property in addition to NPT, VP, and CS. Let S € A be a coalition of agents,
and u, u’ be two vectors of bids satisfying u; = u; for every i ¢ S (we think of u as
the values of agents, and u’ as a vector of strategically chosen bids). Let (Q, p) and
(Q’, p) denote the outputs of the mechanism when the bids are u and u’, respectively.
A mechanism is group strategyproof if for every coalition S of agents, if the inequality
uiq; — p; > u;q; — p; holds forevery i € S, then it holds with equality foreveryi € S.
In other words, there should not be any coalition S and vector u’ of bids such that if
members of S announce u’ instead of u (their true value) as their bids, then every
member of the coalition § is at least as happy as in the truthful scenario, and at least
one person is happier.

Moulin showed that cost-sharing methods satisfying an additional property termed
cross-monotonicity can be used to design group-strategyproof cost-sharing mecha-
nisms. The cross-monotonicity property captures the notion that agents should not be
penalized as the serviced set grows. To define this property, we first need to define the
notion of a cost-sharing scheme.

Definition 15.12 Let (A, ¢) denote a cost-sharing game. A cost-sharing scheme
is a function that foreach set S C A, assigns a cost allocation for S. More formally,
a cost-sharing scheme is a function &: A x 24 > R such that, for every S € A
and every i € S, £(i, ) = 0. We say that a cost-sharing scheme & is y-budget
balanced if for every set S C A, we have yc(S) < ), (@, S) < c(S).

Definition 15.13 A cost-sharing scheme § is cross-monotone ifforall S, T € A
andi € §,§(,8) > &3, SUT).
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Mechanism M
Initialize S <« A.
Repeat
LetS < {i e S:b; =&, S)}.
Until foralli € S, b; > £(i, S).
Return Q = S and p; = £(i, S) for all .

Figure 15.2. Moulin’s group-strategyproof mechanism.

The following proposition shows that cross-monotonicity is a stronger property than
core.

Proposition 15.14 Let & be an y-budget-balanced cross-monotonic cost shar-
ing scheme for the cost-sharing game (A, c¢). Then (., A) is in the y-core of this
game.

PROOF We need to verify only that &(., A) satisfies the core property, i.e., for
every set S € A, Y . (@i, A) < c(S). By the cross-monotonicity property, for
every i € S, £(i, A) < &(i, S). Therefore, D, &, A) < > . &G, S) <c(S),
where the last inequality follows from the y-budget balance property of £. O

Given a cross-monotonic cost-sharing scheme & for the cost-sharing game (A4, ¢),
we define a cost-sharing mechanism M; as presented in Figure 15.2.
The following proposition provides an alternative way to view the mechanism M.

Proposition 15.15  Assume & is a cross-monotonic cost sharing scheme for
the cost-sharing game (A, ¢), and b; € RT U {0} for every i € A. Then there
is a unique maximal set S C A satisfying the property that for every i € S,
b; > £(i, S). The mechanism Mg returns this set.

PROOF Assume that two different maximal sets S; and S, satisfy the stated
property, i.e., b; > £(i, S;) for every i € S| and b; > £(i, S,) for every i € S,.
Then for every i € Sy, b; > £(i, S1) > &€(i, S U ), where the last inequality
follows from cross-monotonicity of £. Similarly, for every i € S, b; > £(i, S; U
S,). Therefore, the set S; U S, also satisfies this property. This contradicts with
the maximality of S| and S.

Let S* denote the unique maximal set satisfying b; > £(i, S*) for all i € S*.
We claim that M, never eliminates any of the agents in S* from the serviced set
S. Consider, for contradiction, the first step where it eliminates an agent i € S*
from the serviced set S. This means that we must have b; < &(i, S). However,
since $* C S, by cross-monotonicity we have £(i, S) < £(i, §*), and hence b; <
£(i, S*), contradicting the definition of S*. Therefore, the set O returned by M;
contains S*. By maximality of S*, it cannot contain any other agent, that is,
Q=S50
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We are now ready to prove the following theorem of Moulin.

Theorem 15.16  If & is an y-budget-balanced cross-monotonic cost-sharing
scheme, then M is group-strategyproof and y -budget balanced.

PROOF Assume, for contradiction, that there is a coalition T of agents that
benefits from bidding according to the vector u’ instead of their true values u.
Agents in T can be partitioned into two sets 7T and T~ based on whether their
bid in w’ is greater than their bid in u, or not. First, we claim that it can be
assumed, without loss of generality, that T is empty, i.e., agents cannot benefit
from overbidding. To see this, we start from a bid vector where every agent in T
bids according to u’ (and others bid truthfully), and reduce the bids of the agents
in T to their true value one by one. If at any step, e.g., when the bid of agent
i € T* is reduced from u to u;, the outcome of the auction changes, then by
Proposition 15.15, i must be a winner when she bids according to u’, and not a
winner when she bids according to u. This means that u§ > &£(1, S;) > u;, where
S; is the set of winners when i bids according to u’. However, this means that
the agent i must pay an amount greater than her true value in the scenario where
every agent in 7 bids according to u’. This is in contradiction with the assumption
that agents in 7" all benefit from the collusion. By this argument, the bid of every
agent in 7" can be lowered to her true value without changing the outcome of
the auction. Therefore, we assume without loss of generality that 7 is empty.

Now, let §" and S denote the set of winners in the untruthful and the truthful
scenarios (i.e., when agents bid according to u’ and u), respectively. As the bid
of each agent in u’ is less than or equal to her bid in u, by Proposition 15.15,
S’ C S. By cross-monotonicity, this implies that the payment of each agent in the
untruthful scenario is at least as much as her payment in the truthful scenario.
Therefore, no agent can be strictly happier in the untruthful scenario than in the
truthful scenario. O

Moulin’s theorem shows that cross-monotonic cost-sharing schemes give rise to
group-strategyproof mechanisms. An interesting question is whether the converse also
holds, i.e., is there a way to construct a cross-monotonic cost-sharing scheme given
a group-strategyproof mechanism? The answer to this question is negative (unless
the cost function is assumed to be submodular), as there are examples where a cost
function has a group-strategyproof mechanism but no cross-monotonic cost-sharing
scheme. A partial characterization of the cost-sharing schemes that correspond to
group-strategyproof mechanisms in terms of a property called semi-cross-monotonicity
is known; however, finding a complete characterization of cost-sharing schemes arising
from group-strategyproof mechanisms remains an open question.

15.4 Cost Sharing via the Primal-Dual Schema

In Section 15.2.2, we discussed how a cost allocation in the approximate core of a game
can be computed by solving an LP, and noted that for many combinatorial optimization
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games, this LP is equivalent to the dual of the standard LP relaxation of the problem
and the cost shares correspond to the dual variables. In this section, we explain how a
technique called the primal-dual schema can be used to compute cost shares that not
only are in the approximate core of the game, but also satisfy the cross-monotonicity
property, and hence can be used in the mechanism described in the previous section. The
primal-dual schema is a standard technique in the field of approximation algorithms,
where the focus is on computing an approximately optimal primal solution, and the
dual variables (cost shares) are merely a by-product of the algorithm.

The idea of the primal-dual schema, which is often used to solve cost minimization
problems, is to write the optimization problem as a mathematical program that can
be relaxed into an LP (we refer to this LP as the primal LP). The dual of this LP
gives a lower bound on the value of the optimal solution for the problem. Primal-dual
algorithms simultaneously construct a solution to the primal problem and its dual.
This is generally done by initially setting all dual variables to zero, and then gradually
increasing these variables until some constraint in the dual program goes tight. This
constraint hints at an object that can be paid for by the dual to be included in the primal
solution. After this, the dual variables involved in the tight constraint are frozen, and
the algorithm continues by increasing other dual variables. The algorithm ends when
a complete solution for the primal problem is constructed. The analysis is based on
proving that the values of the constructed primal and dual solutions are close to each
other, and therefore they are both close to optimal.?

We will elaborate on two examples in this section: submodular games, where a simple
primal-dual algorithm with no modification yields cross-monotonic cost-shares, and the
facility location game, where extra care needs to be taken to obtain a cross-monotonic
cost-sharing scheme. In the latter case, we introduce a rather general technique of
using “ghost duals” to turn the standard primal-dual algorithm for the problem into an
algorithm that returns a cross-monotonic cost-sharing scheme.

15.4.1 Submodular Games

Let us start with a definition of submodular games.

Definition 15.17 A cost-sharing game (A, c) is called a submodular game if the
cost function c satisfies

VS, TCA, c(S)+c(T)=c(SUT)+c(SNT).

The above condition is equivalent to the condition of decreasing marginal cost,
which says that for every two agents i and j and every setof agents S C A\ {i, j},
the marginal cost of adding i to S (i.e., ¢(S U {i}) — c(S)) is no less than the
marginal cost of adding i to S U {j} (i.e., c(SU{i, j}) — c(S U {j})). Recall that
we always assume ¢(@) = 0.

3 In many primal-dual algorithms, a postprocessing step is required to bring the cost of the primal solution down.
However, this step often does not change the cost shares.
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Submodular games (also known as concave games) constitute an important class of
cost-sharing games with many interesting properties. One example in this class is the
multicast problem discussed in Section 14.2.2 of this book.

Consider a submodular game (A, ¢), and the LPs (15.2) and (15.1) as the primal and
the dual programs for this game, respectively. It is not hard to see that by submodularity
of ¢, the solution of the primal program is always c(A), giving a trivial optimal
solution for this LP. However, the dual LP (15.1) is nontrivial and its optimal solutions
correspond to cost allocations in the core of the game. Let & be a feasible solution of
this LP. We say that a set S C A is tight, if the corresponding inequality in the LP is
tight, i.e., if ) jes @ = ¢(S). We need the following lemma to describe the algorithm.

Lemma 15.18 Let a be a feasible solution of the linear program (15.1). If two
sets S1, So C A are tight, then so is S; U S,.

PROOF Since « is feasible, we have Ziesmsz a; < c(S1 N S»). This, together
with the submodularity of ¢ and tightness of S; and S,, implies

(81U 8) < c(S1) + ¢(82) — (81N S2)
=< ZOlj + ZOlj - Z o;
Jj€eS Jje€S2 jesinNs,

- Y o

jesius,

Therefore, S; U S is tight. DO

Corollary 15.19 There is a unique maximal tight set. It is simply the union of
all the tight sets.

We are now ready to state the algorithm that computes the cost shares. This algorithm
is presented in Figure 15.3. Notice that by Lemma 15.18, when a new set goes tight,
the new maximal tight set contains the old one, and therefore once an element i € T
is included in the frozen set F, it will stay in this set until the end of the algorithm.
Thus, the cost share «; at the end of the algorithm is precisely the first time at which
the element j is frozen. Furthermore, note that the algorithm never allows & to become
an infeasible solution of the LP (15.1), and stops only when the set T goes tight.
Hence, the cost shares computed by the algorithm satisfy the budget balance and the
core property. All that remains is to show that they also satisfy the cross-monotonicity
property.

Theorem 15.20  The cost sharing scheme defined by the algorithm Submodu-
larCostShare (Figure 15.3) is cross monotone.

PROOF Let T} C T, C A. We simultaneously run the algorithm for 7} and T,
and call these two runs the 7}-run and the 7,-run. It is enough to show that at any
moment, the set of frozen elements in the 7;-run is a subset of that of the 7>-run.
Consider a time 7 (i.e., the moment when all unfrozen cost shares in both runs are
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Algorithm SubmodularCostShare

Input: submodular cost sharing game (A4, ¢)
set T C A of agents that receive the service

Output: cost shares o; forevery j € T

For every j, initialize o to 0.
Let F =0
While T\ F # # do
Increase all o;’s for j € T \ F at the same rate,
until a new set goes tight.
Let F be the maximal tight set.

Figure 15.3. Algorithm for computing cost shares in a submodular game.

equal to ¢), and let &' and F; denote the values of the variables and the frozen set
at this moment in the 7;-run, for [ = 1, 2. We have

C(F] U Fg)

A

c(F1) + c(F2) — c(F1 N F)

Za} +Zai2— Z ail

ieF iek, ieFiNF,

= Z ai1+Zozl-2

iEFl\Fz ek,

2
2 o

ieMUR,

IA

IA

where the first inequality follows from submodularity of ¢, the second follows
from the tightness of F; with respect to &/ (I = 1, 2) and the feasibility of a!,
and the last follows from the fact that for every i € F| \ F;, sincei € T C T
and i is not frozen at time ¢ in the T>-run, we have o? =t > «/. The above
inequality implies that F| U F, is tight with respect to a?. Since by definition F,
is the maximal tight set with respect to o2, we must have F; U F, = F,. Hence,
Fy C F», as desired. O

15.4.2 The Facility Location Game

We now turn to our second example, the facility location game, and observe how the
standard primal-dual scheme for this problem fails to satisfy cross-monotonicity.
Recall the LP formulation (15.3) of the facility location problem, and the observation
that one can assume, without loss of generality, that in a solution to this program, we
have B;; = max(0, «; — d;;). In designing a primal-dual algorithm for the facility
location game, we think of the quantity max(0, o; — d;;) as the contribution of agent j
toward facility i, and say that a facility i is tight with respect to the dual solution e, if
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the total contribution i receives in & equals its opening cost, i.e., if jeA max(0, o; —
dij) = fi.

Following the general paradigm of the primal-dual schema, let us consider the
following algorithm for computing cost shares in the facility location game: initialize
the cost shares o to zero and gradually increase them until one of these two events
occurs: a facility i goes tight, in which case, this facility is opened, and the cost shares
of all agents j with positive contribution to i are frozen (i.e., no longer increased); or
for an agent j and a facility i that is already opened, a; = d;;, in which case the cost
share of j is frozen. This process continues until all cost shares are frozen.

To illustrate this algorithm, consider the facility location game in Example 15.2
(Figure 15.1). In this example, at time 2, facility 2 goes tight as each of b and ¢ makes
one unit of contribution toward this facility. Therefore, the cost shares of b and c are
frozen at 2. The cost share of the agent a continues to increase to 4, at which point
facility 1 also goes tight and the algorithm stops. In this example, the cost allocation
(4,2, 2) computed by the algorithm is budget balanced and satisfies the core property.
In fact, it is known that in every instance, with a postprocessing step that closes some of
the open facilities, the cost of the primal solution can be brought down to at most 3 times
the sum of cost shares, and therefore the cost shares are %-budget—balanced on every
instance of the facility location game. However, unfortunately the cross-monotonicity
property fails, as can be seen in the example in Figure 15.1. In this example, if only
agents a and b are present, they will both increase their cost share to 3, at which point
both facilities go tight and the algorithm stops. Hence, agent a has a smaller cost share
in the set {a, b} than in {a, b, c}.

Intuitively, the reason for the failure of cross-monotonicity in the above example is
that without ¢, b helps a pay for the cost of facility 1. However, when c is present, she
helps b pay for the cost of facility 2. This, in turn, hurts a, as b stops helping a as soon
as facility 2 is opened. This suggests the following way to fix the problem: we modify
the algorithm so that even after an agent is frozen, she continues to grow her ghost
cost share. This ghost cost share is not counted toward the final cost share of the agent,
but it can help other agents pay for the opening cost of facilities. For example, in the
instance in Figure 15.1 when all three agents are present, even though agents b and ¢
stop increasing their cost share at time 2, their ghost share continues to grow, until at
time 3, facility 1 is opened with contributions from agents a and b. At this point, the
cost share of agent a is also frozen and the algorithm terminates. The final cost shares
will be 3, 2, and 2. The pseudo-code of this algorithm is presented in Figure 15.4.
Variables o’ in this pseudo-code represent the ghost cost shares.

With this modification, it is an easy exercise to show that the cost shares computed
by the algorithm are cross-monotone. However, it is not clear that the budget balance
property is preserved. In fact, it is natural to expect that having ghost cost shares that
contribute toward opening facilities in the primal solution but do not count toward the
final cost shares could hurt the budget balance (see, i.e., Exercise 15.3). For the facility
location problem, the following theorem shows that this is not the case.

Theorem 15.21  The cost allocation computed by the algorithm FLCostShare
(Figure 154) is %—budget balanced.
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Algorithm FLCostShare

Input: facility location game (A4, c¢) defined by
facility opening costs f; and distances d;;
set T C A of agents that receive the service

Output: cost shares o forevery j € T

For every j, initialize both «/; and a} to 0.
Let F = 0.
While T \ F # @ do
Increase all o;’s for j € T \ F and a; ’s for j € T at the same rate, until
e for an unopened facility i, ZjeT max(0, a} —d;j) = fi:
in this case, open facility i, and
add every agent j with a positive contribution toward i to F;
e for an open facility i and an agent j, o; = d;;:
in this case, add j to F.

Figure 15.4. Algorithm for computing cost shares in the facility location game.

PROOF It is enough to show that for every instance of the facility location
problem, it is possible to construct a solution whose cost is at most three times
the sum of the cost shares computed by FLCostShare. To do this, we perform
the following postprocessing step on the solution computed by FLCostShare.
Let #; denote the time at which facility i is opened by FLCostShare, and order
all facilities that are opened by this algorithm in the order of increasing #;’s. We
proceed in this order and for any facility i, check if there is any open facility i’ that
comes before 7 in this order and is within distance 2¢; of i. If such a facility exists,
we close facility i; otherwise, we keep it open. After processing all facilities in
this order, let F’ denote the set of facilities that remain open and connect each
agent in T to its closest facility in F'. We now show that > jer @ is enough to
pay for at least one third of the cost of this solution.

Let S; denote the set of agents within distance #; of facility i. First, observe
that for any two facilities i and i" in F’, S; and S; are disjoint. This is because if
there is an agent j in S; N Sy, the distance between i and i’ is at most ¢; + #;; <
2max(t;, t;7), and therefore one of i and i’ must have been closed in the above
postprocessing step. To complete the proof, it is enough to show two statements.
First, we show that for every facility i € F’, the cost shares of agents in S; is
enough to pay for at least a third of their distances to i (and hence, to their closest
facility in F”) plus the opening cost of i. Second, we show that each agent j that
is not in U;c & S; can pay for at least one third of its distance to its closest facility
in F'.

To prove the first statement, note that for every facility i € F’, the ghost cost
share of every agent contributing to i at the time of its opening is precisely ¢;; hence,
Zjes,» (t; — d;j) = fi. Therefore, if we show that for every j € §;, a; > t;/3, we
would get ZjeSi o > %(f,» + ZjeS,» d;;). Assume, for contradiction, that there is
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anagent j witha; < f;/3 and consider the facility i; with#;, = «; (i.e., the facility
whose opening has caused the cost share of j to freeze). There must be a facility
i, € F’ that is within distance 21;, of i (if i1 € F’, we can let i, = i;). Therefore,
the distance between i and i is at most d;; +d;,; +2t; < t; +3a; < 2t;. This
contradicts the assumption that i € F, since i comes after i, in the ordering and
i) € F'.

To show the second statement, consider an agent j € T \ U;cx S;, and let i be
the facility with #; = o;. There must be a facility i’ in 7 that is within distance
2t; of i (i’ can be the same as i). Therefore, the distance from j to its closest
facility in 7" is at most d;; + 2t; < 3a;. O

15.5 Limitations of Cross-Monotonic Cost-Sharing Schemes

As we saw in Section 15.3, a cost-sharing scheme that is cross-monotone also satisfies
the core property. As a result, for any combinatorial cost-sharing game, an upper
bound on the budget balance factor of cross-monotonic cost-sharing schemes can be
obtained using Theorem 15.8 and the integrality gap examples of the corresponding
LP. As we will see in this section, for many combinatorial optimization games, the
cross-monotonicity property is strictly stronger than the core property, and better upper
bounds on the budget balance factor of such games can be obtained using a technique
based on the probabilistic method.

The high-level idea of this technique is as follows: Fix any cross-monotonic cost-
sharing scheme. We explicitly construct an instance of the game and look at the
cost-sharing scheme on various subsets of this instance. We need to argue that there
is a subset S of agents such that the total cost shares of the elements of S is small
compared to the cost of S. This is done using the probabilistic method: we pick a
subset S at random from a certain distribution and show that in expectation, the ratio
of the recovered cost to the cost of S is low. Therefore, there is a manifestation of S
for which this ratio is low. To bound the expected value of the sum of cost shares of
the elements of S, we use cross-monotonicity and bound the cost share of each agent
i € S by the cost share of i in a substructure 7; of S. Bounding the expected cost
share of i in T; is done by showing that for every substructure 7, every i € T has the
same probability of occurring in a structure S in which 7; = T'. This implies that the
expected cost share of i in 7; (where the expectation is over the choice of S) is at most
the cost of 7; divided by the number of agents in 7;. Summing up these values for all i
gives us the desired bound.

In the following, we show how this technique can be applied to the facility location
problem to show that the factor 1/3 obtained in the previous section is the best possible.
We start by giving an example on which the algorithm FLCostShare in Figure 15.4
recovers only a third of the cost. This example will be used as the randomly chosen
structure in our proof.

Lemma 15.22  Let T be an instance of the facility location problem consisting of
m+kagentsai, ..., an,ay, ..., a, and m facilities fi, ..., f each of opening
cost 3. For every i and j, the connection costs between f; and a; and between
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Figure 15.5. Facility location sample distribution.

fi and a} are all 1, and other connection costs are obtained by the triangle
inequality. See Figure 15.5a. Then if m = w(k) and k tends to infinity, the optimal
solution for T has cost 3m + o(m).

PROOF The solution which opens just one facility, say f;, has cost 3m + k +
1 = 3m + o(m). We show that this solution is optimal. Consider any feasible
solution that opens f facilities. The first opened facility can cover k + 1 agents
with connection cost 1. Each additional facility can cover 1 additional client with
connection cost 1. Thus, the number of agents with connection cost 1 is k + f.
The remaining m — f agents have connection cost 3. Therefore, the cost of the
solutionis 3f+k+ f+3(m— f)=3m+k+ f. As f > 1, this shows that
any feasible solution costs at least as much as the solution we constructed. O

Theorem 15.23  Any cross-monotonic cost-sharing scheme for facility location
is at most 1/3-budget-balanced.

PROOF Consider the following instance of the facility location problem. There
are k sets Ay, ..., Ay of m agents each, where m = w(k) and k = w(1). For every
subset B of agents containing exactly one agent from each A; (| BN A;| =1
for all i), there is a facility fp with connection cost 1 to each agent in B. The
remaining connection costs are defined by extending the metric, that is, the cost
of connecting agent i to facility fp fori ¢ B is 3. The facility opening costs are
all 3.

We pick a random set S of agents in the above instance as follows: Pick a
random i from {1, ..., k}, and for every j # i, pick an agent a; uniformly at
random from A;. Let T ={a; : j #i}and § = A; U T. See Figure 15.5b for an
example. It is easy to see that the set S induces an instance of the facility location
problem almost identical to the instance Z in Lemma 15.22 (the only difference
is that here we have more facilities, but it is easy to see that the only relevant
facilities are the ones that are present in Z). Therefore, the cost of the optimal
solution on S is 3m + o(m).

We show that for any cross-monotonic cost-sharing scheme &, the average
recovered cost over the choice of S is at most m + o(m) and thus conclude that
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there is some S whose recovered cost is at most m + o(m). We start by bounding
the expected total cost share using linearity of expectation and cross-monotonicity:

Es [Zé(a,S)j| =E|> £@.9S)|+E|) £@;.S)
aes _aeA,- J#i

<E|) &@{a)uT) |+ E| Y E@;T)

| aca; i

Notice that the set 7" has a facility location solution of cost 3 + k — 1 and thus by
the budget-balance condition the second term in the above expression is at most
k + 2. The first term in the above expression can be written as mEg ,[£(a, {a} U
T)], where the expectation is over the random choice of S and the random choice
of a from A;. This is equivalent to the following random experiment: From each
A, pick an agent a; uniformly at random. Then pick i from {1, ..., k} uniformly
at random and let a = a; and T = {a; : j # i}. From this description it is clear
that the expected value of £(a, {a} U T) is equal to % Z’;zl Eaj, {ar, ..., ar}).
This, by the budget-balance property and the fact that {a,, ..., a;} has a solution
k43

of cost k + 3, cannot be more than = Therefore,

ES[ZS(a, S)} <m (%) +(k+2)=m+om),  (15.6)

aeS

when m = w(k) and k = w(1). Therefore, the expected value of the ratio of
recovered cost to total cost tends to 1/3. O

15.6 The Shapley Value and the Nash Bargaining Solution

One of the problems with the notion of core in cost-sharing games is that it rarely
assigns a unique cost allocation to a game: as illustrated in Example 15.4, the core
of a game is often either empty (making it useless in deciding how the cost of a
service should be shared among the agents), or contains more than one point (making it
necessary to have a second criterion for choosing a cost allocation). In this section, we
study a solution concept called the Shapley value that assigns a single cost allocation
to any given cost-sharing game. We also discuss a solution concept known as the Nash
bargaining solution for a somewhat different but related framework for surplus sharing.
In both cases, the solution concept can be uniquely characterized in terms of a few
natural axioms it satisfies. These theorems are classical examples of the axiomatic
approach in economic theory.

Both the Shapley value and the Nash bargaining solution are widely applicable
concepts. For example, an application of the Shapley value in combination with the
Moulin mechanism to multicasting is discussed elsewhere in this book (see Section
14.2.2). Also, the Nash solution is related to Kelly’s notion of proportional fairness
discussed in Section 5.12, and the Eisenberg-Gale convex program of Section 6.2.
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15.6.1 The Shapley Value

Consider a cost-sharing game defined by the set .4 of n agents and the cost function c.
A simple way of allocating the cost c(.A) among all agents is to order the agents in some
order, say ay, ay, . . ., a,, then proceed in this order and charge each agent the marginal
cost of adding her to the serviced set. In other words, the first agent a; will be charged
her stand-alone cost c¢({a;}), the second agent a, will be charged c({a;, a»}) — c({a1}),
and so on. This method is called an incremental cost sharing.

A problem with the method described above is that it is not anonymous, i.e., the
ordering of the agents makes a difference in the amount they will be charged. The
Shapley value fixes this problem by taking a random ordering of the agents picked
uniformly from the set of all n! possible orderings, and charging each agent her expected
marginal cost in this ordering. Since for any agent i € A and any set S C A \ {i} with
|S| = s, the probability that the set of agents that come before i in a random ordering
is precisely S is s!(n — 1 — s)!/n!, the Shapley value can be defined by the following
formula:

n—1
For each agenti, ¢;(c) = Z st — } — 9 Z (c(SU{i}) — c(9)),
s=0 n: SCA\{i},|S|=s

where ¢;(c) indicates the cost share of i € A in the cost-sharing game (A, ¢). As the
following example shows, the cost sharing given by the Shapley value need not be in
the core of the game, even if the core is nonempty.

Example 15.24  Consider the facility location game defined in Example 15.2.
The Shapley values in this game are as follows:

o= s XAt X34t xattxa 23
= — X - X - x - x4=—
3 6 6 3 6
B = s X3t ix2 4wl
= - X - X - X -x1=—
b= 3 6 6 3 6

1 1 1 1 7
== X34 -x3+-xl4-x2= -
Pe=3x3tgx3tgxlrax2=3

This cost allocation is not in the core of the game, since ¢, + ¢, = % >4 =
c({b, c}). This is despite the fact that, as we saw in Example 15.4, the core of this
game is nonempty.

However, for submodular games, it is known that any incremental cost-sharing, and
therefore the Shapley value (which is a linear combination of incremental cost-sharing
methods), is in the core of the game. In fact, it can be shown that in this class of games,
the Shapley value is cross-monotone (see Exercise 15.2), making it useful in the design
of group-strategyproof mechanisms using Moulin’s mechanism of Section 15.3.% This

4 Tt is worth noting that since the Shapley value is defined in terms of a formula comprising of exponentially many
points of the function ¢(-), evaluating it is computationally hard in general. However, when the cost function ¢
is submodular, random sampling can be used to approximate the Shapley values to within an arbitrary degree
of accuracy.
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is used in Section 14.2.2 of this book, in an application to the multicast problem. Many
other applications of the Shapley value, as well as various generalizations (to settings
such as NTU games or games with nonbinary demands), are extensively studied in the
economic literature.

15.6.2 An Axiomatic Characterization of the Shapley Value

In his original paper, Shapley introduced what is now known as the Shapley value as
the unique value satisfying the three properties defined below.

Definition 15.25 Fix a set .4 of n agents. A value is a function that assigns to
each cost function ¢ a vector ¢(c) € R" of nonnegative numbers. Three properties
of values are defined as follows.

* Anonymity: Changing the names of the agents does not change their cost shares.
Formally, ¢ satisfies anonymity if for every permutation 7 of 4 and every cost
function ¢, ¢, (7w (c)) = ¢i(c) for every i € A.

* Dummy: An agent who does not add to the cost should not be charged anything.
More precisely, if for every set S C A\ {i}, ¢(S) = ¢(S U {i}), then ¢;(c) = 0.

e Additivity: For every two cost functions ¢ and c;, ¢(c; + ¢2) = ¢(c1) + d(c2),
where c¢; + ¢ is the cost function defined by (c; + ¢2)(S) = ¢1(S) + ¢2(S).

Theorem 15.26  The Shapley value is the unique value satisfying anonymity,
dummy, and additivity.

The above theorem, whose proof is omitted here, is an example of the axiomatic
method in the economic theory, whose goal is to find (or prove the nonexistence of)
solution concepts that satisfy certain sets of desirable axioms, or characterize known
solution concepts in terms of axioms they satisfy. Two other prominent examples of
axiomatic results are Nash’s theorem on bargaining (presented in the next section; this
result is considered a starting point for the axiomatic approach in economic theory),
and Arrow’s impossibility result in the social choice literature. One example where
this framework is applied in computer science is the axiomatic characterization of the
PageRank algorithm for ranking Web search results.

15.6.3 The Nash Bargaining Solution

The bargaining problem studies a situation where two or more agents need to select
one of the many possible outcomes of a joint collaboration. Examples include wage
negotiation between an employer and a potential employee, or trade negotiation be-
tween two countries. Each party in the negotiation has the option of leaving the table,
in which case the bargaining will result in a disagreement outcome. More formally,
a bargaining game for two players (the case of more players is similar) is given by
a set X € R?, along with a disagreement point d € X. Each point in X corresponds
to one outcome of the bargaining, and specifies the utility of each player for this out-
come. The point d specifies the utility of each player for the disagreement outcome. As
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adding or subtracting a value to the utility of an individual does not change her relative
preferences, we assume, without loss of generality, that d = (0, 0). Furthermore, we
assume that the set X is convex and compact. Note that convexity of X is without
loss of generality, if an outcome is allowed to be a probability distribution over pure
outcomes. Furthermore, we assume X contains at least one point whose coordinates
are both positive (i.e., both parties have some incentive to negotiate).

The above model for bargaining was first defined and studied by Nash. Note that
an NTU cooperative game can be considered an extension of the bargaining model,
where in addition to the outcome of individual deviations (the disagreement point),
the outcome of group deviations are also given. Nash’s bargaining theorem gives a
characterization of a solution for the bargaining game in terms of axioms it satisfies.
Formally,

Definition 15.27 A solution for the bargaining game (also known as a social
choice function) is a function that assigns to each set X satisfying the above
properties a single point ¢(X) € X. We define four properties of a solution as
follows:

* Pareto Optimality: ¢(X) is a Pareto optimal point in X, i.e., there isno point p € X
with p > ¢(X), coordinate-wise.

o Symmetry: If the set X is symmetric, then ¢(X) = (u, u) for some u € R.

* Scale Independence: The solution is independent of the scale used to measure
individual utilities; i.e., if X’ is obtained from X by multiplying all utilities of the
i’th player by A;, then ¢(X’) can be obtained from ¢(X) by multiplying the i’th
coordinate by A;.

e [ndependence of Irrelevant Alternatives: If Y C X and ¢(X) € Y, then ¢(Y) =
¢(X).

We now state Nash’s bargaining theorem. The proof of this theorem is simple, and is
omitted here.

Theorem 15.28  There is a unique solution for bargaining games satisfying
Pareto optimality, symmetry, scale independence, and independence of irrelevant
alternatives. This solution assigns to each set X a point (uy, uy) maximizing uu;.

Nash’s theorem gives one example of what is called a collective utility function. A
collective utility function is a function that aggregates the utilities of individuals into
a single number indicating the utility of the society. Classical examples of collective
utility functions are the utilitarian function (which simply adds up the individual
utilities), the egalitarian function (which takes the minimum of individual utilities),
and the Nash function (which takes the product of the utilities).

15.7 Conclusion

In this chapter, we reviewed some of the basic notions (such as the core,
cross-monotonicity, group-strategyproof mechanisms, Shapley value, and the Nash
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bargaining solution) and classical results on cost and surplus sharing. We observed that
the algorithmic questions regarding computing cost shares are closely tied to the LP
formulation of the corresponding optimization problem, and explained how standard
LP-based techniques developed in the field of approximation algorithms can be used
to tackle such questions.

There is also a potential for contributions in the other direction. For many com-
binatorial optimization problems, thinking in terms of the cost-sharing problem (i.e.,
the dual problem) instead of the primal can shed new light on the problem. In the
facility location example discussed in Section 15.4.2, the proof of Theorem 15.21
gives an approximation algorithm different from the standard primal-dual algorithm
for the problem. As it turns out, in this case the algorithm was known before, but
Theorem 15.21 gives a new primal-dual interpretation of this algorithm. For the Steiner
forest problem, the search for a cross-monotonic cost-sharing scheme has resulted in a
new 2-approximation algorithm, and a stronger LP relaxation for the problem. In fact,
for most combinatorial optimization problems, LP (15.2) is at least as strong an LP
formulation as the standard LP relaxation; i.e., it gives at least as good a lower bound
on the value of the optimal solution. These LPs are equivalent for some problems, as
we saw in Section 15.2.2 for the facility location problem. However, for many other
problems, such as the well-studied Steiner tree problem, this appears not to be the
case. Therefore, one possible approach to obtain stronger LP relaxations (which could
lead to better approximation algorithms) for such problems is to start from (15.2) and
try to relax this program into one that can be solved in polynomial time. In the case
of the Steiner tree problem, the integrality gap of LP (15.2) seems to be related to
the long open question on the integrality gap of the bidirected LP relaxation of this
problem.

Another way the economic approach to cost sharing can contribute to the theory
of algorithms is by providing new perspectives and new problems. For example, the
axiomatic approach explained in Section 15.6 seems to be a suitable tool for studying
properties of heuristic algorithms. One notable example is the axiomatic characteriza-
tion of the popular web ranking algorithm PageRank. Also, the field of combinatorial
optimization almost exclusively deals with problems whose objective is to minimize
the total cost, or maximize the total benefit, which, according to the terminology in-
troduced in Section 15.6.3, corresponds to the utilitarian collective utility function.
However, the field of social choice suggests other objective functions, which can lead
to new challenging algorithmic questions. One notable example is the Santa Claus prob-
lem, which seeks to optimize the egalitarian objective in a simple scheduling model.
Also, many of the algorithmic results presented in Chapter 5 for Fisher markets (where
the Eisenberg—Gale convex program shows that the market equilibrium corresponds
to the point maximizing the Nash collective utility function) can be viewed in this
light.

15.8 Notes

Sections 15.1 and 15.2. The notion of a cooperative game was first proposed by von
Neumann and Morgenstern (1944). The notion of the core was first introduced by
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Gillies (1959). Theorem 15.6 was independently discovered by Bondareva (1963) and
Shapley (1967). Theorem 15.11 is due to Scarf (1967). Deng et al. (1997) observed
the connection between the core of many combinatorial optimization games and the
integrality gap of the corresponding LP. Goemans and Skutella (2000) showed this
connection for the facility location game, and proved that deciding whether the core of
a facility location game is nonempty is NP-complete. The best lower and upper bound
on the integrality gap of LP (15.3) are ﬁ, due to Mahdian et al. (2006), and Tl&, due
to Guha and Khuller (1999) See Immorlica et al. (2006) for an example of a problem

modeled using NTU games.

Section 15.3. For a discussion of the NPT, VP, and CS properties of cost sharing
mechanisms see Moulin (1999) and Moulin and Shenker (2001). In our definition of
group-strategyproof mechanisms, we did not allow side payments between members of
a coalition. For a discussion of mechanism design in a setting where collusion with side
payments is allowed, see Goldberg and Hartline (2005). This cross-monotonicity prop-
erty for cost sharing is similar to the population monotonicity property introduced by
Thomson (1983, 1995) in the context of bargaining. For cooperative games, this notion
was first introduced by Sprumont (1990). The mechanism M and Theorem 15.16 are
due to Moulin (1999), where he also proves a converse to this theorem for submodu-
lar games. Examples on the connection between group-strategyproof mechanisms and
cost-sharing schemes, and a partial characterization of such mechanisms are due to
Immorlica et al. (2005).

Sections 15.4 and 15.5. For a general introduction to the primal-dual schema from the
perspective of approximation algorithms, see the excellent book by Vazirani (2001).
The cost-sharing scheme presented in Section 15.4 for submodular games is due to
Dutta and Ray (1989). This scheme was formulated as a primal-dual algorithm and
generalized to an algorithm that can increase the dual variables at different rates by Jain
and Vazirani (2002). Both Dutta and Ray (1989) Jain and Vazirani (2002) also prove
several fairness properties of their cost-sharing schemes. The technique of using ghost
duals and its application to the facility location problem (algorithm in Figure 15.4) and
single-source rent-or-buy problem are due to Pal and Tardos (2003). The proof of their
result on the facility location problem (Theorem 15.21) is based on an algorithm that
is originally due to Mettu and Plaxton (2000). The first (non-cross-monotonic) primal-
dual algorithm for the facility location problem is due to Jain and Vazirani (2001).
The probabilistic technique presented in Section 15.5 and its application to several
problems including facility location, vertex cover, and set cover are due to Immorlica
etal. (2005). Koénemann et al. (2007) gave a 1/2-budget-balanced mechanism, together
with a matching upper bound for the Steiner forest problem.

Section 15.6. The Shapley value and its axiomatic characterization (Theorem 15.26)
are due to Shapley (1953). In the same paper, Shapley shows that for convex games
(which correspond to submodular games in the context of cost sharing) the Shapley
value is in the core. The application of Shapley values to the multicast problem is
due to Feigenbaum et al. (2000) and is explained in detail in Chapter 14. For other
applications of the Shapley value, see the book edited by Roth (1988) or the survey
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by Winter (2002). The generalization of the Shapley value to games with nonbinary
demand is due to Aumann and Shapley (1974). See the survey by McLean (1994) for
various generalizations to NTU games. The result on the computation of Shapley values
for submodular games is due to Mossel and Saberi (2006). The axiomatic result of
Arrow is given in Arrow (1959). Axiomatic characterizations of PageRank (Page et al.,
1999) are given by Palacois-Huerta and Volij (2004) and by Altman and Tennenholtz
(2005). We refer the reader to the excellent survey by Moulin (2002) for further
information on the axiomatic approach to cost sharing. Theorem 15.28 is proved in
a seminal paper by Nash (1950). See Moulin (1988) for further discussion of this
theorem and its generalization to more than two players. See Moulin (1988, 2003)
for a discussion of various collective utility functions and social choice rules. For
more information on the Santa Claus problem see Bansal and Sviridenko (2006) and
Asadpour and Saberi (2006).
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Exercises

15.1

15.2

15.3

Consider a setting with n agents and m goods where each agent is endowed with a
bundle of goods and a linear utility function that specifies the utility that this agent
derives from consuming a bundle (this is the same as the linear Arrow-Debreu
markets defined in Section 5.10 of this book). The value of a coalition S of agents
in this model can be defined as the maximum total utility that agents in S can
derive by optimally redistributing their endowments. Model this setting as a TU
game. Does this game always have a nonempty core?

Prove that for submodular cost-sharing games, the Shapley value is cross-
monotone.

In the vertex cover game, agents correspond to edges in a graph, and the cost of
a set S of agents is the minimum size of a set of vertices that contains at least
one of the endpoints of each edge in S. A simple primal-dual approach gives a 2-
approximation algorithm for this problem. Modify this algorithm using the idea of
ghost cost shares to obtain a cross-monotonic cost-sharing scheme. Find examples
where this scheme fails to extract a constant fraction of the cost of the solution. Use
this example, together with the technique explained in Section 15.5, to prove that
no cross-monotonic cost-sharing scheme for this game is €2(1)-budget-balanced.



